Структура компьютера с процессором

Устройство современного процессора компьютера

Устройство современного процессора компьютера

Современные процессоры имеют форму небольшого прямоугольника, который представлен в виде пластины из кремния. Сама пластина защищена специальным корпусом из пластмассы или керамики. Под защитой находятся все основные схемы, благодаря им и осуществляется полноценная работа ЦП. Если с внешним видом все предельно просто, то, что касается самой схемы и того, как устроен процессор? Давайте разберем это подробнее.

Как устроен процессор компьютера

В состав ЦП входит небольшое количество различных элементов. Каждый из них выполняет свое действие, происходит передача данных и управления. Обычные пользователи привыкли отличать процессоры по их тактовой частоте, количеству кэш-памяти и ядрам. Но это далеко не все, что обеспечивает надежную и быструю работу. Стоит уделить отдельное внимание каждому компоненту.

Внешний вид процессора

Архитектура

Внутренняя конструкция ЦП часто отличается друг от друга, каждому семейству присущ свой набор свойств и функций – это и называется его архитектурой. Пример конструкции процессора вы можете наблюдать на изображении ниже.

Пример архитектуры процессора

Но многие под архитектурой процессора привыкли подразумевать немного другое значение. Если рассматривать ее с точки зрения программирования, то она определяется по его возможности выполнять определенный набор кодов. Если вы покупаете современный CPU, то скорее всего он относится к архитектуре x86.

Основная часть CPU называется ядром, в нем содержатся все необходимые блоки, а также происходит выполнение логических и арифметических задач. Если вы посмотрите на рисунок ниже, то сможете разобрать как выглядит каждый функциональный блок ядра:

Схематическое устройство процессора

  1. Модуль выборки инструкций. Здесь осуществляется распознавание инструкций по адресу, который обозначается в счетчике команд. Число одновременного считывания команд напрямую зависит от количества установленных блоков расшифровки, что помогает нагрузить каждый такт работы наибольшим количеством инструкций.
  2. Предсказатель переходов отвечает за оптимальную работу блока выборки инструкций. Он определяет последовательность исполняемых команд, нагружая конвейер ядра.
  3. Модуль декодирования. Данная часть ядра отвечает за определения некоторых процессов для выполнения задач. Сама задача декодирования очень сложная из-за непостоянного размера инструкции. В самых новых процессорах таких блоков встречается несколько в одном ядре.
  4. Модули выборки данных. Они берут информацию из оперативной или кэш-памяти. Осуществляют они именно выборку данных, которая необходима на этот момент для исполнения инструкции.
  5. Управляющий блок. Само название говорит уже о важности данного компонента. В ядре он является главнейшим элементом, поскольку производит распределение энергии между всеми блоками, помогая выполнять каждое действие вовремя.
  6. Модуль сохранения результатов. Предназначен для записи после окончания обработки инструкции в RAM. Адрес сохранения указывается в исполняющейся задаче.
  7. Элемент работы с прерываниями. ЦП способен выполнять сразу несколько задач благодаря функции прерывания, это позволяет ему останавливать ход работы одной программы, переключаясь на другую инструкцию.
  8. Регистры. Здесь хранятся временные результаты инструкций, данный компонент можно назвать небольшой быстрой оперативной памятью. Часто ее объем не превышает несколько сотен байт.
  9. Счетчик команд. Он хранит в себе адрес команды, которая будет задействована на следующем такте процессора.

Системная шина

По системной шине CPU соединяются устройства входящие в состав ПК. К ней напрямую подключен только он, остальные элементы подсоединяются через разнообразные контроллеры. В самой шине присутствует множество сигнальных линий, через которые происходит передача информации. Каждая линия имеет свой собственный протокол, обеспечивающий связь по контроллерам с остальными подключенными компонентами компьютера. Шина имеет свою частоту, соответственно, чем она выше, тем быстрее совершается обмен информацией между связующими элементами системы.

Системная шина процессора

Кэш-память

Быстродействие ЦП зависит от его возможности максимально быстро выбирать команды и данные из памяти. За счет кэш-памяти сокращается время выполнения операций благодаря тому, что она играет роль временного буфера, обеспечивающего мгновенную передачу данных CPU к ОЗУ или наоборот.

Основной характеристикой кэш-памяти является ее различие по уровням. Если он высокий, значит память более медленная и объемная. Самой скоростной и маленькой считается память первого уровня. Принцип функционирования данного элемента очень прост – CPU считывает из ОЗУ данные и заносит их в кэш любого уровня, удаляя при этом ту информацию, к которой обращались давно. Если процессору нужна будет эта информация еще раз, то он получит ее быстрее благодаря временному буферу.

Сокет (разъем)

Благодаря тому, что процессор имеет собственный разъем (гнездовой или щелевой), вы можете легко заменить его при поломке или модернизировать компьютер. Без наличия сокета ЦП просто бы впаивался в материнскую плату, усложняя последующий ремонт или замену. Стоит обратить внимание – каждый разъем предназначен исключительно для установки определенных процессоров.

Разъем для процессора

Часто пользователи по невнимательности покупают несовместимые процессор и материнскую плату, из-за чего появляются дополнительные проблемы.

Видеоядро

Благодаря внедрению в процессор видеоядра он выполняет роль видеокарты. Конечно, по мощности он с ней не сравнится, но если вы покупаете CPU для несложных задач, то вполне можно обойтись и без графической карточки. Лучше всего встроенное видеоядро показывает себя в недорогих ноутбуках и дешевых настольных компьютерах.

Графическое ядро CPU

В этой статье мы подробно разобрали из чего состоит процессор, рассказали о роли каждого элемента, его важности и зависимости от других элементов. Надеемся, что эта информация была полезна, и вы узнали новое и интересное для себя из мира CPU.

ЗакрытьМы рады, что смогли помочь Вам в решении проблемы.

Помимо этой статьи, на сайте еще 12333 инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

Отблагодарите автора, поделитесь статьей в социальных сетях.

ЗакрытьОпишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Источник

Устройство системного блока: состав и характеристики компонентов

Системный блок — на первый взгляд, простое инженерное решение в форме коробки, назначение которого, объединение компонентов базовой архитектуры ПК.

Базовая архитектура ПК — это основные компоненты системного блока, без которых невозможна работа компьютера.

В чём же сложность системного блока, как решения? Для нас ни в чём, потому что дизайнеры и инженеры продумали всё до мелочей — нам не нужно ломать голову над тем, как и что устанавливать в системный блок. К тому же, продумано расположение компонентов с учётом их охлаждения.

Состав системного блока

В базовый состав системного блока входят следующие компоненты:

  • материнская плата,
  • процессор,
  • оперативная память,
  • твердотельный накопитель (SSD) или жёсткий диск (HDD),
  • блок питания,
  • видеокарта.

Графический процессор видеокарты может быть встроен в центральный процессор и использовать часть оперативной памяти для своей работы.

Характеристики компонентов системного блока

Параметры компьютера напрямую зависят от характеристик компонентов, которые входят в состав системного блока.

Корпус системного блока

Неотъемлемой частью системного блока является корпус, который имеет отсеки для установки материнской платы (1), накопителей (2), блока питания (3) и нишу для прокладки кабелей питания (кабель менеджмент (4)).

Не стоит забывать об охлаждении компьютера — корпус имеет места для установки кулеров забора холодного и отвода горячего воздуха. Захват холодного воздуха осуществляется кулерами, расположенными в лицевой и боковой области корпуса. Выброс горячего воздуха производится вентиляторами на тыльной и верхней стороне системного блока.

При возможности применения водяного охлаждения, корпус оснащается специальными отверстиями для прокладки трубок и местом установки блока охлаждения жидкости.

К основным характеристикам корпуса системного блока, можно отнести:

  • отсутствие или наличие блока питания в комплекте и его мощность,
  • расположение блока питания — вверху или внизу (предпочтительней для лучшего охлаждения),
  • возможность установки полноформатной материнской платы (зависит от типоразмера корпуса),
  • ширина ниши для установки материнской платы (полезно для установки видеокарт с длинной базой),
  • количество кулеров воздушного охлаждения,
  • возможность установки водяного охлаждения.

Материнская плата

Системная плата — основа любой архитектуры ПК — объединяет компоненты системного блока в единое целое. На материнскую плату устанавливаются — процессор и система охлаждения процессора, оперативная память, видеокарта. К ней подключаются — накопители (SSD, HDD), блок питания, прочие считывающие и записывающие устройства, а также вся периферия компьютера (клавиатура, мышь, монитор (опционально), принтер, сканер, МФУ, шлем виртуальной реальности и т.д.)

Материнская плата, в зависимости от характеристик, может иметь:

  • ряд тонких настроек для разгона производительности системы,
  • разное число слотов для установки оперативной памяти,
  • поддержку двух и более видеокарт,
  • возможность подключения монитора (при работе со встроенной графикой),
  • разное число USB-разъёмов,
  • различные габариты (зависит от стандарта системной платы).

Процессор

Центральное процессорное устройство или ЦПУ (CPU) — ядро системного блока, отвечает за выполнение программного кода, взаимодействует практически со всеми компонента архитектуры ПК.

Современные модели процессоров оснащаются встроенной графикой, что позволяет исключить видеокарту из состава системного блока. По характеристикам, такие процессоры подходят для домашних/офисных или бюджетных игровых компьютеров. При правильной настройке BIOS, встроенный графический процессор способен задействовать до 2 Гб оперативной памяти под свои нужды.

Охлаждение процессора

На процессор ложится основная нагрузка, в результате выделяется огромное количество тепла и устройство нуждается в охлаждении. В зависимости от мощности процессора, варьируются и размеры воздушной системы охлаждения. Чем большее количество тепла нужно рассеивать, тем крупнее габариты процессорных кулеров.

Читайте также:  Системы для учета компьютеров

Оперативная память

Оперативное запоминающее устройство или ОЗУ — энергозависимая память, в которой находится исполняемый процессором код (программа), промежуточные данные ввода/вывода, настройки драйверов и временные параметры операционной системы.

Главные характеристики оперативной памяти — объём и частота работы — чем выше показатели, тем лучше.

Накопители SSD и HDD

В состав системного блока могут входить два вида накопителей — твердотельный (SSD) и жёсткий диск (HDD).

Твердотельный накопитель или SSD — обладает высокой скоростью чтения/записи, хорошо подходит для установки операционной системы и обеспечивает «молниеносный» старт компьютера. Из минусов, имеет небольшой объём и ограниченный ресурс на операции чтения/записи.

Жёсткий диск или HDD — имеет большой объём, подходит для хранения фото, видео, игр, обладает высоким ресурсом в отношении операций чтения/записи. Из минусов, низкая скорость чтения/записи, при длительной эксплуатации появляются битые сектора.

Блок питания

Блок питания или БП — основной питающий компонент системного блока. От мощности и характеристик блока питания зависит стабильность работы всей системы.

К важным характеристикам БП относятся следующие параметры:

  • мощность (всегда должна быть с запасом, на случай разгона системы),
  • линия питания процессора должна иметь коннектор 8-pin (позволит реализовать весь потенциал процессора),
  • несколько линий 6-pin и 8-pin для установки одной или более видеокарт,
  • диаметр и расположение кулера охлаждения (влияет на уровень шума и эффективность охлаждения БП).

Видеокарта

Графическая карта — главный компонент игрового системного блока. От видеокарты зависят качество и производительность графики в играх.

Основные характеристики, на которые стоит обратить внимание, при выборе видеокарты:

  • частота работы графического процессора,
  • ширина шины (для взаимодействия с центральным процессором),
  • объём видеопамяти и её тактовая частота (используется для хранения готовых кадров).

Прочие компоненты

Мы ознакомились с базовыми компонентами в составе системного блока. Существует множество других устройств, которые могут значительно расширить функционал компьютера:

  • звуковая карта или аудиокарта — обеспечивает более высокое качество звука, снабжена интерфейсом для записи аудиосигнала — позволяет превратить компьютер в студию звукозаписи;
  • карта DVB-S2 — принимает и обрабатывает спутниковый сигнал — позволяет просматривать открытые ТВ-каналы и получать доступ к высокоскоростному интернету;
  • карта видеозахвата — позволяет обрабатывать, как аналоговый, так и цифровой видеосигнал — используется при оцифровке видео с магнитных носителей (кассет);
  • прочие контроллеры — диагностика авто, работа с ЧПУ-станками и измерительными приборами.

Устройство системного блока

Подведём итог, на наглядном примере, посмотрим на устройство системного блока, а также на расшифровку его характеристик.

Расшифровка характеристик системного блока

Возьмём, для примера, следующие характеристики и расшифруем их:

[Intel Core i3 9100F, 4×3600 МГц, 8 ГБ DDR4, GeForce GTX 1650, SSD 512 ГБ, без ОС]

Источник



Устройство и основные характеристики
центрального процессора

Информация о процессоре компьютера, его значении, технологии изготовления, а также о характеристиках, которые необходимо учитывать при его выборе и приобретении.

Содержание:

Что такое процессор и как он устроен

Центральный процессор (микропроцессор, центральное процессорное устройство, CPU, разг. – «проц», «камень») – сложная микросхема, являющаяся главной составной частью любого компьютера. Именно это устройство осуществляет обработку информации, выполняет команды пользователя и руководит другими частями компьютера.

Уже много лет основными производителями процессоров являются американские компании Intel и AMD (Advanced Micro Devices). Есть, конечно, и другие достойные производители, но до уровня указанных лидеров им далеко.

Intel и AMD постоянно борются за первенство в изготовлении все более производительных и доступных процессоров, вкладывая в разработки огромные средства и много сил. Их конкуренция — важный фактор, содействующий быстрому развитию этой отрасли. Как выглядит процессор компьютера

Внешне центральный процессор не представляет собой ничего выдающегося – небольшая плата (где-то 7 х 7 см.) с множеством контактов с одной стороны и плоской металлической коробочкой с другой. Но на самом деле внутри этой коробочки хранится сложнейшая микроструктура из миллионов транзисторов.

Как изготавливают процессоры. Что такое техпроцесс

Основным материалом при производстве процессоров является самый обычный песок, а точнее сказать кремний, коего в составе земной коры около 30%. Из очищенного кремния сначала изготавливают большой монокристалл цилиндрической формы, который разрезают на «блины» толщиной около 1 мм.

Затем с использованием технологии фотолитографии в них создаются полупроводниковые структуры будущих процессоров.

Фотолитография чем-то напоминает процесс печати фотографий с пленки, когда свет, проходя через негатив, действует на поверхность фотобумаги и проецирует на ней изображение.

При изготовлении процессоров своеобразной фотобумагой выступают упомянутые выше кремниевые «блины». Роль света играют ионы бора, разогнанные до огромной скорости высоковольтным ускорителем. Они пропускаются через специальные «трафареты» — системы высокоточных линз и зеркал, вкрапливаются в кремний и создают в нем микроскопическую структуру из множества транзисторов.

Сегодняшние технологии позволяют создавать транзисторы размером всего 22 нанометра (толщина человеческого волоса — около 50000 нм). Со временем техпроцесс изготовления процессоров станет еще совершеннее. По прогнозам, их транзисторы уменьшатся как минимум до 14 нм.

Чем тоньше техпроцесс – тем больше транзисторов можно поместить в один процессор, тем он будет производительнее и энергоэффективнее.

Созданная таким образом полупроводниковая структура вырезается из кварцевого «блина» и помещается на текстолит. На обратную его сторону выводятся контакты для обеспечения подсоединения к материнской плате. Сверху кристал защищается от повреждения металлической крышкой (см. рис. выше).

Понятие архитектуры, ядра, ревизии процессора

Процессоры прошли сложную эволюцию и сейчас продолжают развиваться. Производители совершенствуют не только технологию изготовления, но и внутреннюю структуру процессоров. Каждое новое их поколение отличается от предыдущего строением, количеством и характеристиками входящих в их состав элементов.

Процессоры, в которых используются те же базовые принципы строения, называют процессорами одной архитектуры, а эти принципы — архитектурой (микроархитектурой) процессора.

В пределах одной архитектуры процессоры могут существенно отличаться — частотами системной шины, техпроцессом изготовления, размером и структурой внутренней памяти и некоторыми другими особенностями. О таких процессорах говорят, что они имеют разные ядра.

В рамках доработки одного ядра производители могут делать небольшие изменения с целью устранения мелких недочетов. Такие усовершенствования, которые «не тянут» на звание самостоятельных ядер, называют ревизиями.

Архитектурам и ядрам присваиваются определенные имена, а их ревизиям – цифробуквенные обозначения. Например, все модели Intel Core 2 Duo являются процессорами микроархитектуры Intel Core и производились с ядрами Allendale, Conroe, Merom, Kentsfield, Wolfdale, Yorkfield. У каждого из этих ядер были еще и разные ревизии.

Основные характеристики процессора

Количество вычислительных ядер.

Многоядерные процессоры – это процессоры, содержащие на одном процессорном кристалле или в одном корпусе два и более вычислительных ядра.

Многоядерность, как способ повышения производительности процессоров, используется с относительно недавнего времени, но признана самым перспективным направлением их развития. Для домашних компьютеров уже существуют процессоры с 8 ядрами. Для серверов на рынке есть 12-ядерные предложения (Opteron 6100). Разработаны прототипы процессоров, содержащие около 100 ядер.

Эффективность вычислительных ядер разных моделей процессоров отличается. Но в любом случае, чем их (ядер) больше, тем процессор производительнее.

Количество потоков.

Чем больше потоков – тем лучше. Количество потоков не всегда совпадает с количеством ядер процессора. Так, благодаря технологии Hyper-Threading, 4-ядерный процессор Intel Core i7-3820 работает в 8 потоков и во многом опережает 6-тиядерных конкурентов.

Размер кеша 2 и 3 уровней.

Кеш — это очень быстрая внутренняя память процессора, которая используется им как буфер для временного хранения информации, обрабатываемой в конкретный момент времени. Чем кеш больше – тем лучше.

Структура не всех современных процессоров предусматривает наличие кеша 3 уровня, хотя критичным моментом это не является. Так, по результатам многих тестов производительность процессоров Intel Core 2 Quadro, выпускавшихся с 2007 г. по 2011 г. и не имеющих кеша 3 уровня, даже сейчас выглядит достойно. Правда, кеш 2 уровня у них достаточно большой.

Частота процессора.

Здесь все просто – чем выше частота процессора, тем он производительнее.

Скорость шины процессора (FSB, HyperTransport или QPI).

Через эту шину центральный процессор взаимодействует с материнской платой. Ее скорость (частота) измеряется в мегагерцах и чем она выше — тем лучше.

Техпроцесс.

Понятие техпроцесса рассматривалось в предыдущем пункте этой статьи. Чем тоньше используемый техпроцесс, тем больше процессор содержит транзисторов, меньше потребляет электроэнергии и меньше греется. От техпроцесса во многом зависит еще одна важная характеристика процессора — TDP.

Termal Design Point — показатель, отображающий энергопотребление процессора, а также количество тепла, выделяемого им в процессе работы. Единицы измерения — Ватты (Вт). TDP зависит от многих факторов, среди которых главными являются количество ядер, техпроцесс изготовления и частота работы процессора.

Кроме прочих преимуществ, «холодные» процессоры (с TDP до 100 Вт) лучше поддаются разгону, когда пользователь изменяет некоторые настройки системы, вследствие чего увеличивается частота процессора. Разгон позволяет без дополнительных финансовых вложений увеличить производительность процессора на 15 – 25 %, но это уже отдельная тема.

Читайте также:  Бортовой компьютер multitronics se 50v

В то же время, проблему с высоким TDP всегда можно решить приобретением эффективной системы охлаждения (см. последний пункт этой статьи).

Наличие и производительность видеоядра.

Последние технические достижения позволили производителям, помимо вычислительных ядер, включать в состав процессоров еще и ядра графические. Такие процессоры, кроме решения своих основных задач, могут выполнять роль видеокарты. Возможностей некоторых из них вполне достаточно для игры в компьютерные игры, не говоря уже о просмотре фильмов, работе с текстом и решении остальных задач.

Если видеоигры — не главное предназначение компьютера, процессор со встроенным графическим ядром позволит сэкономить на приобретении отдельного графического адаптера.

Тип и максимальная скорость поддерживаемой оперативной памяти.

Эти характеристики процессора необходимо учитывать при выборе оперативной памяти, с которой он будет использоваться. Нет смысла переплачивать за быстрые модули ОЗУ, если процессор не сможет реализовать все их преимущества.

Что такое сокет

Важным моментом, который нужно учитывать при выборе процессора, является то, для установки в сокет какого типа он предназначен.

Сокет (socket, разъем центрального процессора) – это щелевой или гнездовой разъём на материнской плате, в который устанавливается процессор.

Каждый процессор можно установить только на материнскую плату с подходящим разъемом, имеющим соответствующие размеры, необходимое количество и структуру контактных элементов.

Каждый новый сокет разрабатывается производителями процессоров, когда возможности старых разъемов уже не могут обеспечить нормальную работу новых изделий.

Для процессоров Intel длительное время использовался (и сейчас еще используется) сокет LGA775 (процессоры Pentium 4, Pentium D, Celeron D, Pentium EE, Core 2 Duo, Core 2 Extreme, Celeron, Xeon серии 3000, Core 2 Quad). С началом производства линейки новых процессоров были введены сокеты LGA1366, LGA1156, LGA1155 (процессоры i7, i5, i3) и др.

Разъемы для процессоров от AMD за последние годы также изменились — AM2, AM2+, AM3 и т.д. О более ранних сокетах, думаю, смысла вспоминать нет, поскольку компьютеры на их основе – уже раритет.

Если вы задумали модернизировать старый компьютер путем приобретения более производительного процессора, убедитесь, что по сокету он подойдет к вашей старой материнской плате. Иначе однозначно придется менять и ее.

Устанавливать центральный процессор в сокет системной платы нужно аккуратно, чтобы не повредить контакты.

Система охлаждения процессора

Как выглядит куллер процессора

Процессор нуждается в надлежащем охлаждении, иначе он может выйти из строя.

Как известно, верхняя поверхность процессора представляет собой металлическую коробку, выполняющую, кроме защитных, еще и теплоотводные функции. Поверх процессора на материнской плате устанавливается система охлаждения. Ее теплоотводные элементы должны плотно прижиматься к поверхности процессора.

Для улучшения передачи тепла с процессора на радиатор системы охлаждения, между ними прокладывается слой термопасты – специального пастообразного вещества с высокой теплопроводностью.

При подборе системы охлаждения процессора нужно учитывать его TDP (рассматривалось выше в пункте о характеристиках процессора).

Процессоры обычно продаются в так называемом боксовом варианте поставки, когда в комплект входит штатная система охлаждения – боксовый куллер. Но иногда эффективность такого куллера является недостаточной (например, если был произведен разгон и частота процессора, а следственно и его TDP, возросла).

Нормальная температура работы процессора — до 50 градусов Цельсия (при пиковых нагрузках возможно чуть больше). Средства измерения температуры встроены в центральный процессор. При помощи специальных программ температуру можно отслеживать в режиме реального времени (например, программой SpeedFan).

Современный процессор устроен так, что при достижении им критичной температуры он отключается и не включается, пока не остынет. Это позволяет предупредить его повреждение под воздействием высокой температуры.

Перегрев возможен вследствие низкой эффективности системы охлаждения, выхода ее из строя, засорения пылью, пересыхания термопасты и др.


НАПИСАТЬ АВТОРУ

Источник

Процессоры. Что это такое. История развития.

Всем доброго времени суток. Сейчас хочу немного поговорить о процессорах, не только, как компьюерная комплектующая, а в целом что из себя он представляет и как работает.
Конечно же, таких статей вы и сами можете найти сотни в интернете, только вбив в поисковой строке одно слово, но эта статья тем интересней, что входит в серию статей, разбирающие все комплектующие, что дает более целостную картину восприятия, также, тут вы найдете для себя интересные сравнения, изложение сложных терминов языком не просвященных, а также историю того, как человечество дошло до такой невероятной вещи, как процессор.

Что такое процессор? Процессор (от англ. «to process» — «обрабатывать») — это программа или устройство, предназначенные для обработки чего-либо. Является центральным вычислительным элементом любого компьютера, управляет всеми остальными его элементами. Современный микропроцессор — это прямоугольная пластинка из кристаллического кремния. На ее маленькой площади расположены схемы (транзисторы). Пластинка находится в керамическом или пластмассовом корпусе, к которому она подсоединяется посредством золотых проводков. Благодаря такой конструкции процессор легко и надежно подсоединяется к системной плате ПК.

У процессора есть:

Тактовая частота процессора.

Тактовая частота указывает скорость работы процессора в герцах – количество рабочих операций в секунду. Тактовая частота процессора подразделяется на внутреннюю и внешнюю. Да, эта характеристика процессора значительно влияет на скорость работы вашего ПК, но производительность зависит далеко не только от неё.

Внутренняя тактовая частота обозначает темп, с которым процессор обрабатывает внутренние команды. Чем выше показатель – тем быстрее внешняя тактовая частота.

Внешняя тактовая частота определяет, с какой скоростью процессор обращается к оперативной памяти.

Разрядность процессора.

Разрядность представляет собой предельное количество разрядов двоичного числа, над которым может производиться машинная операция передачи информации.

Размерность технологического процесса.

Определяет размеры транзистора (толщину и длину затвора). Частота работы кристалла определяется частотой переключений транзисторов (из закрытого состояния в открытое). С уменьшением размера уменьшается выделение тепла. Размерность технологического процесса измеряется в нанометрах.

Сокет (разъем).

Гнездовой или щелевой разъем, предназначен для интеграции чипа в схему материнской платы. Каждый разъем допускает установку только определенного типа процессоров.

PGA (Pin Grid Array) – корпус квадратной или прямоугольной формы, штырьковые контакты.

BGA (Ball Grid Array) – шарики припоя.

LGA (Land Grid Array) – контактные площадки.

Кэш-память процессора.

Кэш-память процессора является одной из ключевых характеристик, на которую стоит обратить внимание при выборе. Кэш-память – массив сверхскоростной энергозависимой ОЗУ. Является буфером, в котором хранятся данные, с которыми процессор взаимодействует чаще или взаимодействовал в процессе последних операций. Благодаря этому уменьшается количество обращений процессора к основной памяти. Этот вид памяти делится на три уровня: L1, L2, L3. Каждый из уровней отличается по размеру памяти и скорости, и задачи ускорения у них отличаются. L1 — самый маленький и быстрый, L3 — самый большой и медленный. К каждому уровню процессор обращается поочередно (от меньшего к большему), пока не обнаружит в одном из них нужную информацию. Если ничего не найдено, обращается к оперативной памяти.

Энергопотребление и тепловыделение.

Чем выше энергопотребление процессора, тем выше его тепловыделение.
TDP (Thermal Design Power) – параметр, указывающий на то количество тепла, которое способна отвести охлаждающая система от определенного процессора при наибольшей нагрузке. Значение представлено в ваттах при максимальной температуре корпуса процессора.

ACP (Average CPU Power) – средняя мощность процессора, показывающая энергопотребление процессора при конкретных задачах.

Рабочая температура процессора.

Наивысший показатель температуры поверхности процессора, при котором возможна нормальная работа (54-100 °С). Этот показатель зависит от нагрузки на процессор и от качества отвода тепла. При превышении предела компьютер либо перезагрузится, либо просто отключится. Это очень важная характеристика процессора, которая напрямую влияет на выбор типа охлаждения.

Множитель и системная шина.

Front Side Bus – частота системной шины материнской платы. Тактовая частота процессора является произведением частоты FSB на множитель процессора. У большинства процессоров заблокирован разгон по множителю, поэтому приходится разгонять по шине.

Встроенное графическое ядро.

Процессор может быть оснащен графическим ядром, отвечающим за вывод изображения на монитор. В последние годы, встроенные видеокарты такого рода хорошо оптимизированы и без проблем тянут основной пакет программ и большинство игр на средних или минимальных настройках. Для работы в офисных приложениях и серфинга в интернете, просмотра Full HD видео и игры такой видеокарты вполне достаточно.

Количество ядер (потоков).

Многоядерность одна из важнейших характеристик центрального процессора, но в последнее время ей уделяют слишком много внимания. Не так давно процессоры были одноядерными, их производительность на то время была достаточно хорошой, и не требовала увеличения мощности, когда процессоры уже уперлись в какой-то “потолок”. На замену одноядерным пришли процессоры с 2, 4 и 8 ядрами.
Если 2 и 4-ядерные вошли в обиход очень быстро, процессоры с 8 ядрами пока не так востребованы. Для использования офисных приложений и серфинга в интернете достаточно 2 ядер, 4 ядра требуются для САПР и графических приложений, которым просто необходимо работать в несколько потоков.
Что касается 8 ядер, очень мало программ поддерживают так много потоков, а значит, такой процессор для большинства приложений просто бесполезен. Обычно, чем меньше потоков, тем больше тактовая частота. Из этого следует, что если программа, адаптированная под 4 ядра, а не под 8, на 8-ядерном процессе она будет работать медленнее. Но этот процессор отличное решение для тех, кому необходимо работать сразу в большом количестве требовательных программ одновременно. Равномерно распределив нагрузку по ядрам процессора можно наслаждаться отличной производительностью во всех необходимых программ.
В большинстве процессоров количество физических ядер соответствует количеству потоков: 8 ядер – 8 потоков. Но есть процессоры, где благодаря Hyper-Threading, к примеру, 4-ядерный процессор может обрабатывать 8 потоков одновременно.

Читайте также:  Почему компьютер выключился и моргает

Как это работает.

Сам процессор представляет собой небольшую квадратную пластину (чип), внутри которой находятся миллионы транзисторов.

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

Современные процессоры, как и первый, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.
Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие – операционную и операндную.
Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра, которые разделяют выполнение команды на несколько этапов:

выработка;
дешифрование;
выполнение команды;
обращение к памяти самого процессора
сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.
Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).
Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают основные задачи:

математические действия на основе арифметико-логического устройства;
перемещение данных (информации) из одного типа памяти в другой;
принятие решения по исполнению команды, и на его основе – выбор переключения на выполнения других наборов команд.
Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.
Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.
Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.
Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.
Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор – «умирает» вся компьютерная система.

История создания. Дальнейшее развитие процессоров.

В настоящее время технология развивается стремительно, каждый год появляется несколько новых микропроцессоров. Однако факторы, влияющие на это развитие, известны. Зная эти факторы, довольно уверенно можно предсказывать и основные пути развития процессоров в ближайшем будущем.
Нам необходимо, выявить основную цель развития процессоров, определить ограничения, которые накладываются на процессоры, оценить существующие современные подходы построения микропроцессоров.

Устремления и ограничения Общая цель, которую стремятся достичь все разработчики микропроцессоров – получить процессор максимальной производительности с наименьшими затратами как в разработке, так и в производстве. При этом процессор должен быть как можно более универсален. Лишь при достаточно большой массовости производства можно разделить все расходы по разработке модели на такое количество выпущенных экземпляров, что цена одного процессора будет иметь разумный размер. Если же процессор найдет весьма узкое применение, то львиную долю его стоимости будут составлять расходы по собственно разработке процессора, а не расходы по его производству. Именно поэтому так дороги уникальные серверные и процессорные платформы, применяемые для нужд обороны и прочих малораспространенных задач. В общем случае, расходы по разработке, скажем, новой модели Celeron и какой-либо сложной специализированной структуры весьма сопоставимы. Однако цена специализированной системы будет превышать цену обычной в десятки раз.
Проще всего создать процессор, оптимизированный под одну-единственную задачу. В рамках этой задачи можно достичь пика производительности для данной элементной базы. Но в связи с универсальностью происходят потери в производительности. Борьба противоположных требований, при всей своей простоте, является основным фактором влияния.
Другим фактором, является удобство применения процессора для разработки приложений. При разработке любого сложного проекта на каком-то этапе сама технология производства оказывается делом первостепенной важности. Качественная реализация проекта оказывается невозможной без применения специальных средств для контроля за качеством производимых программных продуктов. Именно в этом заключаются корни популярности объектно-ориентированного подхода в языках высокого уровня. В той же мере и на уровне машинных кодов удобство системы команд может оказывать большое влияние на качество работы. Чем удобнее окажется процессор для разработчиков, тем больше будет выпущено программных продуктов именно для этой платформы, и тем привлекательней окажется эта платформа для конечных пользователей. Процессор должен обладать максимальной производительностью, при этом он должен сохранять свою относительную универсальность, обеспечивающую массовость производства. Также процессор должен быть достаточно удобен для разработки сложных приложений. С учетом всех этих требований можно рассматривать ныне существующие модели, оценивать их перспективность и, до некоторой степени, предсказывать их дальнейшее развитие.

Самым существенным фактором, влияющим на архитектурные решения современных процессоров, является постоянное совершенствование технологии производства. Как следствие,- рост уровня интеграции, уменьшение задержек в транзисторах и связях, снижение энергопотребления при переключении транзистора.С ростом уровня интеграции увеличиваются ресурсы на кристалле и повышается тактовая частота работы, что позволяет повышать производительность процессоров. Первое направление связано с увеличением объёма внутренней кэш-памяти. Второе направление связано с реализацией в процессорах принципов конвейеризации и параллельной обработки в нескольких конвейерах на разных стадиях выборки и выполнения команд.
Практически все накопленные в процессе конкуренции различных фирм архитектурные решения находят своё воплощение в новых архитектурах. В архитектуре современных процессоров различных производителей много общего, и ставится вопрос об унификации архитектур.
Современный процессор – это 64-разрядный суперконвейерный, суперскалярный процессор с RISC-операционным ядром и большим числом дополнительных блоков, реализующий динамическое исполнение команд. Для эффективной обработки данных мультимедиа и графики система команд современных процессоров расширяется за счёт специализированных команд мультимедийной обработки.
Для унификации структур обработки данных в структуры некоторых современных процессоров включают специальные преобразователи исходных кодов команд во внутренние машинные команды «исполнительного процессора».
Масштабные исследования ведутся по созданию процессорных элементов и компьютеров в целом с использованием принципиально иной элементной базы: биполярных молекул, молекул ДНК, квантовых кубитов и света.

История возникновения центрального процессора.

История развития производства процессоров полностью соответствует истории развития технологии производства прочих электронных компонентов и схем.
Первым этапом было создание процессоров с использованием электромеханических реле, ферритовых сердечников и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.
Третьим этапом стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и резисторные сборки, затем, по мере развития технологии, стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы — элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора — микропрограммное устройство,арифметическо-логическое устройство, регистры, устройства работы с шинами данных и команд.

Источник